#include "terrain.hpp" using namespace cgp; // Evaluate 3D position of the terrain for any (x,y) float evaluate_terrain_height(float x, float y, float terrain_length) { //p, h, sigma -> positions, heights and wideness of bell curves vec2 p[] = { {-10, -10}, {5, 5}, {-3, 4}, {6, 4} }; float h[] = { 3.0f, -1.5f, 1.0f, 2.0f }; float sigma[] = { 10.0f, 3.0f, 4.0f, 4.0f }; float z = 0; for (int i = 0; i < 4; i++) { float d = norm(vec2(x, y) - p[i]) / sigma[i]; z += h[i] * std::exp(-d * d); } perlin_noise_parameters parameters; parameters.terrain_height = 25; parameters.octave = 9; parameters.frequency_gain = 2.4; parameters.persistency = 0.33; float perlin_noise = parameters.terrain_height * noise_perlin(vec2(3*x / terrain_length, 3*y / terrain_length), parameters.octave, parameters.persistency, parameters.frequency_gain); return perlin_noise; } mesh create_terrain_mesh(int N, float terrain_length) { mesh terrain; // temporary terrain storage (CPU only) terrain.position.resize(N*N); terrain.uv.resize(N * N); terrain.color.resize(N * N); perlin_noise_parameters parameters; parameters.terrain_height = 6; parameters.octave = 6; parameters.frequency_gain = 6; parameters.persistency = 0.26; float perlin_noise; // Fill terrain geometry for(int ku=0; ku<N; ++ku) { for(int kv=0; kv<N; ++kv) { // Compute local parametric coordinates (u,v) \in [0,1] float u = ku/(N-1.0f); float v = kv/(N-1.0f); // Compute the real coordinates (x,y) of the terrain in [-terrain_length/2, +terrain_length/2] float x = (u - 0.5f) * terrain_length; float y = (v - 0.5f) * terrain_length; // Compute the surface height function at the given sampled coordinate float z = evaluate_terrain_height(x,y, terrain_length); // Store vertex coordinates terrain.position[kv+N*ku] = {x,y,z}; terrain.uv[kv+N*ku] = {x,y}; //blending parameter for color perlin_noise = parameters.terrain_height * noise_perlin(vec2(3 * x / terrain_length, 3 * y / terrain_length), parameters.octave, parameters.persistency, parameters.frequency_gain); float b = std::min(2.0, exp((z+perlin_noise-20)/2)/exp(6)); terrain.color[kv + N * ku] = (1-b)*vec3(0,0.3f,0) + b * vec3(1, 1, 1); } } // Generate triangle organization // Parametric surface with uniform grid sampling: generate 2 triangles for each grid cell for(int ku=0; ku<N-1; ++ku) { for(int kv=0; kv<N-1; ++kv) { unsigned int idx = kv + N*ku; // current vertex offset uint3 triangle_1 = {idx, idx+1+N, idx+1}; uint3 triangle_2 = {idx, idx+N, idx+1+N}; terrain.connectivity.push_back(triangle_1); terrain.connectivity.push_back(triangle_2); } } // need to call this function to fill the other buffer with default values (normal, color, etc) terrain.fill_empty_field(); return terrain; } std::vector<cgp::vec3> generate_positions_on_terrain(int N, float terrain_length) { std::vector<vec3> rand_pos; float x, y; float d = terrain_length / 2.0f; for (int i = 0; i < N; i++) { x = rand_interval(-d, d); y = rand_interval(-d, d); rand_pos.push_back({ x,y, evaluate_terrain_height(x, y, terrain_length) }); } return rand_pos; }