Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
P
PHY571 Birds flocking
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Quentin LOUIS
PHY571 Birds flocking
Commits
63f52135
Commit
63f52135
authored
Nov 18, 2018
by
Hippalectryon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
group size & fit
fix polygon visualisation
parent
c8aab711
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
216 additions
and
52 deletions
+216
-52
Amaury/God/DataProcessing.py
Amaury/God/DataProcessing.py
+101
-3
Amaury/God/DataVisualisation.py
Amaury/God/DataVisualisation.py
+102
-40
Amaury/God/Pandora.py
Amaury/God/Pandora.py
+2
-0
Amaury/experiments.py
Amaury/experiments.py
+11
-9
No files found.
Amaury/God/DataProcessing.py
View file @
63f52135
...
...
@@ -5,6 +5,7 @@ from typing import List, Dict, Tuple
import
numpy
as
np
import
scipy.optimize
import
scipy.spatial
import
God.SaveAndLoad
as
SaveAndLoad
from
God.Physics
import
Physics
...
...
@@ -16,7 +17,7 @@ log.setLevel(logging.INFO)
def
get_group_size_occurences
(
groups
:
List
[
list
])
->
Tuple
[
List
[
int
],
List
[
int
]]:
size_groups
=
[
len
(
group
)
for
group
in
groups
]
size_groups
=
[
len
(
group
)
for
group
in
groups
]
size_groups_curated
=
[
i
for
i
in
size_groups
if
i
>
0
]
max_size_group
=
np
.
max
(
size_groups_curated
)
size_x
=
range
(
1
,
max_size_group
+
1
)
...
...
@@ -52,6 +53,7 @@ class Processor:
self
.
to_process
[
"group_size_avg"
]
=
"group_size_avg"
in
to_process
self
.
to_process
[
"group_size_avg_fit"
]
=
self
.
to_process
[
"group_size_avg"
]
and
(
"group_size_avg_fit"
in
to_process
)
self
.
to_process
[
"group_hulls"
]
=
"group_hulls"
in
to_process
self
.
to_process
[
"avg_speed"
]
=
"avg_speed"
in
to_process
self
.
to_process
[
"avg_angle"
]
=
"avg_angle"
in
to_process
self
.
to_process
[
"correlations"
]
=
"correlations"
in
to_process
...
...
@@ -76,6 +78,12 @@ class Processor:
self
.
data_holders
[
"group_size_combined"
]
=
[]
if
self
.
to_process
[
"group_size_avg_fit"
]:
self
.
data_holders
[
"group_size_avg_fit"
]
=
[]
if
self
.
to_process
[
"group_hulls"
]:
self
.
data_holders
[
"group_hulls"
]
=
[]
self
.
data_holders
[
"group_hulls_dimensions"
]
=
[]
self
.
data_holders
[
"group_hulls_dimensions_avg"
]
=
[]
self
.
data_holders
[
"group_dimensions_combined"
]
=
[]
self
.
data_holders
[
"group_hulls_dimensions_avg_fit"
]
=
[]
if
self
.
to_process
[
"correlations"
]:
self
.
data_holders
[
"correlations"
]
=
[]
if
self
.
to_process
[
"correlations_fit"
]:
...
...
@@ -177,6 +185,88 @@ class Processor:
log
.
warning
(
"Exception in group size fit: %s"
%
e
)
self
.
data_holders
[
"group_size_avg_fit"
].
append
(
None
)
def
process_group_hulls
(
self
,
sky
:
Sky
,
group_to_size
:
List
[
int
])
->
None
:
groups
=
self
.
data_holders
[
"groups"
][
-
1
]
positions
=
np
.
array
([
bird
.
pos
for
bird
in
sky
.
birds
])
indexes_of_bird_by_group
=
[
np
.
array
([
i
for
i
in
range
(
len
(
groups
))
if
groups
[
i
]
==
j
])
for
j
in
range
(
len
(
groups
))]
all_hulls
=
[]
all_hulls_dimensions
=
np
.
zeros
(
np
.
max
(
group_to_size
)
+
1
)
for
group
in
range
(
len
(
group_to_size
)):
birds_indexes
=
indexes_of_bird_by_group
[
group
]
if
len
(
birds_indexes
)
==
0
:
all_hulls
.
append
((
0
,
[]))
continue
elif
len
(
birds_indexes
)
==
1
:
all_hulls
.
append
((
0
,
[
birds_indexes
[
0
]]))
continue
positions_hull
=
positions
[
birds_indexes
]
if
len
(
birds_indexes
)
==
2
:
hull_indexes
=
list
(
range
(
len
(
birds_indexes
)))
scipy_hull
=
None
periodic_shift
=
np
.
array
((
0
,
0
))
else
:
elements_shift_x
=
[
pos
[
0
]
for
pos
in
positions_hull
if
pos
[
0
]
>
sky
.
L
/
2
]
elements_shift_y
=
[
pos
[
1
]
for
pos
in
positions_hull
if
pos
[
1
]
>
sky
.
L
/
2
]
shift_x
=
(
np
.
min
(
elements_shift_x
)
-
sky
.
L
/
2
)
if
len
(
elements_shift_x
)
>
0
else
0
shift_y
=
(
np
.
min
(
elements_shift_y
)
-
sky
.
L
/
2
)
if
len
(
elements_shift_y
)
>
0
else
0
periodic_shift
=
np
.
array
((
shift_x
,
shift_y
))
positions_hull
-=
periodic_shift
# offset to avoid boundary issues
positions_hull
%=
sky
.
L
scipy_hull
=
scipy
.
spatial
.
ConvexHull
(
positions_hull
)
hull_indexes
=
scipy_hull
.
vertices
positions_hull
+=
periodic_shift
# offset to avoid boundary issues
positions_hull
%=
sky
.
L
all_hulls
.
append
((
periodic_shift
,
birds_indexes
[
hull_indexes
]))
all_hulls_dimensions
[
group_to_size
[
group
]]
+=
(
scipy_hull
.
volume
if
scipy_hull
is
not
None
else
0
)
self
.
data_holders
[
"group_hulls"
].
append
(
all_hulls
)
self
.
data_holders
[
"group_hulls_dimensions"
].
append
(
all_hulls_dimensions
)
# average
group_dimensions_combined
=
self
.
data_holders
[
"group_dimensions_combined"
]
# adjust size of group_size_combined if "new sizes" have appeared
size_diff
=
len
(
all_hulls_dimensions
)
-
len
(
group_dimensions_combined
)
if
size_diff
>
0
:
for
_
in
range
(
size_diff
):
# avoid shenanigans with mutable lists
group_dimensions_combined
+=
[[]]
# register sizes observes this frame
for
size
in
range
(
len
(
all_hulls_dimensions
)):
if
all_hulls_dimensions
[
size
]
>
0
:
group_dimensions_combined
[
size
].
append
(
all_hulls_dimensions
[
size
])
self
.
data_holders
[
"group_hulls_dimensions_avg"
].
append
(
[
np
.
mean
(
group_dimensions
)
for
group_dimensions
in
group_dimensions_combined
])
# avg fit
def
fit
(
x
,
a1
):
return
x
**
a1
group_dimension_avg
=
np
.
array
(
self
.
data_holders
[
"group_hulls_dimensions_avg"
][
-
1
])
size_x
=
np
.
array
(
range
(
len
(
group_dimension_avg
)))
try
:
nonzero_indexes
=
[
i
for
i
in
range
(
len
(
group_dimension_avg
))
if
not
np
.
isnan
(
group_dimension_avg
[
i
])]
group_dimension_avg
=
group_dimension_avg
[
nonzero_indexes
]
size_x
=
size_x
[
nonzero_indexes
]
popt
,
_
=
scipy
.
optimize
.
curve_fit
(
fit
,
size_x
,
group_dimension_avg
)
a
,
=
popt
residuals
=
group_dimension_avg
-
fit
(
size_x
,
a
)
ss_res
=
np
.
sum
(
residuals
**
2
)
ss_tot
=
np
.
sum
((
group_dimension_avg
-
np
.
mean
(
group_dimension_avg
))
**
2
)
r_squared
=
1
-
(
ss_res
/
ss_tot
)
self
.
data_holders
[
"group_hulls_dimensions_avg_fit"
].
append
([
a
,
r_squared
])
except
Exception
as
e
:
log
.
warning
(
"Exception in group dimensions fit: %s"
%
e
)
self
.
data_holders
[
"group_hulls_dimensions_avg_fit"
].
append
(
None
)
def
process_correlations
(
self
,
sky
:
Sky
,
L
:
float
)
->
None
:
correlations_stochastic_points
=
self
.
options
[
"correlations_stochastic_points"
]
dists
,
corrs
=
sky
.
get_angles_correlations
(
n
=
correlations_stochastic_points
)
...
...
@@ -237,7 +327,8 @@ class Processor:
if
self
.
to_process
[
"avg_angle"
]:
self
.
process_avg_angle
(
sky
)
if
self
.
to_process
[
"groups"
]
or
self
.
to_process
[
"group_size"
]
or
self
.
to_process
[
"group_size_avg"
]:
if
self
.
to_process
[
"groups"
]
or
self
.
to_process
[
"group_size"
]
or
self
.
to_process
[
"group_size_avg"
]
or
\
self
.
to_process
[
"group_hulls"
]:
groups
,
bird_to_group
=
physics
.
get_groups
()
group_to_size
,
size_occurences
=
get_group_size_occurences
(
groups
)
if
self
.
to_process
[
"group_to_size"
]:
...
...
@@ -250,6 +341,8 @@ class Processor:
self
.
process_group_size_avg
(
size_occurences
,
frame_number
)
if
self
.
to_process
[
"group_size_avg_fit"
]:
self
.
process_group_size_avg_fit
()
if
self
.
to_process
[
"group_hulls"
]:
self
.
process_group_hulls
(
sky
,
group_to_size
)
if
self
.
to_process
[
"correlations"
]:
self
.
process_correlations
(
sky
,
L
)
...
...
@@ -261,11 +354,16 @@ class Processor:
SaveAndLoad
.
save_data_dirname
(
self
.
data_holders
[
prop_name
],
output_file
,
"%s.json"
%
prop_name
)
# save the actual data
simple_propreties
=
[
"avg_speed"
,
"avg_angle"
,
"groups"
,
"group_size"
,
"group_to_size"
,
"group_size_avg"
,
"group_size_avg_fit"
,
simple_propreties
=
[
"avg_speed"
,
"avg_angle"
,
"groups"
,
"group_size"
,
"group_to_size"
,
"group_size_avg"
,
"group_size_avg_fit"
,
"group_hulls"
,
"correlations"
,
"correlations_fit"
]
for
property_name
in
simple_propreties
:
if
self
.
to_process
[
property_name
]:
save_prop_name
(
property_name
)
if
self
.
to_process
[
"group_hulls"
]:
save_prop_name
(
"group_hulls_dimensions"
)
save_prop_name
(
"group_hulls_dimensions_avg"
)
save_prop_name
(
"group_hulls_dimensions_avg_fit"
)
# save the simulation's parameters
self
.
simulation_params
[
"processing_options"
]
=
self
.
options
...
...
Amaury/God/DataVisualisation.py
View file @
63f52135
This diff is collapsed.
Click to expand it.
Amaury/God/Pandora.py
View file @
63f52135
...
...
@@ -6,6 +6,8 @@ class NumpyEncoder(json.JSONEncoder):
def
default
(
self
,
obj
):
if
isinstance
(
obj
,
np
.
ndarray
):
return
obj
.
tolist
()
if
isinstance
(
obj
,
np
.
int64
)
or
isinstance
(
obj
,
np
.
int32
):
return
int
(
obj
)
return
json
.
JSONEncoder
.
default
(
self
,
obj
)
...
...
Amaury/experiments.py
View file @
63f52135
...
...
@@ -38,21 +38,23 @@ def launch_two_groups(output_file: str, L: float, n_birds_1: int, n_birds_2: int
Life
.
simulate
(
physics
,
dt
,
total_time
,
verbose_prop
=
.
1
,
output_file
=
output_file
)
launch_two_groups
(
"simulation_data/test.json"
,
L
=
100
,
n_birds_1
=
200
,
n_birds_2
=
100
,
radius_1
=
5
,
radius_2
=
5
,
total_time
=
100
,
center_1
=
[
20
,
50
],
center_2
=
[
80
,
50
],
angle_1
=
0
,
angle_2
=
np
.
pi
)
# launch_simulation_random("simulation_data/test.json", L=100, n_birds=1000, eta=.3, total_time=50) # , evolve=evolve)
to_process
=
[
"avg_speed"
,
"avg_angle"
,
"group_size"
,
"group_size_avg"
,
"group_size_avg_fit"
,
"groups"
,
"correlations"
,
"correlations_fit"
,
"group_to_size"
]
Processor
().
process
(
"simulation_data/test.json"
,
"processing_data/test"
,
verbose_prop
=
.
1
,
to_process
=
to_process
,
options
=
{
"correlations_stochastic_points"
:
5000
})
# launch_two_groups("simulation_data/test.json", L=100, n_birds_1=100, n_birds_2=0, radius_1=5, radius_2=5,
# total_time=60, center_1=[50, 50], center_2=[80, 50], angle_1=0, angle_2=np.pi, eta=.4)
# to_process = ["avg_speed", "avg_angle", "group_size", "group_size_avg", "group_size_avg_fit", "groups", "correlations",
# "correlations_fit", "group_to_size", "group_hulls"]
# Processor().process("simulation_data/test.json", "processing_data/test", verbose_prop=.1, to_process=to_process,
# options={"correlations_stochastic_points": 5000})
to_draw
=
[
"avg_speed"
,
"avg_angle"
,
"avg_polar"
,
"correlations"
,
"correlations_fit"
,
"correlation_length"
,
"group_size"
,
"group_size_avg"
,
"group_size_avg_fit"
,
"quiver"
,
"evolution_group_size"
]
"group_size"
,
"group_size_avg"
,
"group_size_avg_fit"
,
"
group_dimension"
,
"group_dimension_avg"
,
"
quiver"
,
"evolution_group_size"
]
Visualiser
(
"processing_data/test"
,
"visualisations/test.mp4"
,
simulation_data_file
=
"simulation_data/test.json"
,
verbose_prop
=
.
1
,
to_draw
=
to_draw
,
options
=
{
"quiver_color_by_group"
:
False
,
"quiver_draw_by_group"
:
False
,
"quiver_color_single"
:
True
,
"max_group_size"
:
500
0
,
to_draw
=
to_draw
,
t_start
=
0
,
options
=
{
"quiver_color_by_group"
:
True
,
"quiver_draw_by_group"
:
True
,
"quiver_color_single"
:
True
,
"max_group_size"
:
5
0
,
"max_num_groups"
:
500
}).
vizualize
()
# N = [10000]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment