''' librairies nécéssaires ''' from globals import * from logging_cvrp import * reset_timer() log.write_globals() log.title("starting to import necessary librairies...") import pyomo.environ as pyo from pyomo.opt import SolverFactory from numpy.random import random as rd from numpy.random import randint as rdi from numpy import float64 from numpy import sqrt from numpy import Infinity from pyomo.core import Param import numpy as np import support import constraint import debugging import sys import cvrpGoogleOpt as google import cbc import graph import matplotlib.pyplot as plt log.write_timed("finished importing all modules") ################## ### HYPOTHESIS ### ################## ''' the depot will always be at index 0 and have a demand of 0 we code the variable x into a matrix n*n that is symmetric and has a null diagonal. We choose to consider as valid, indices (i,j) such that i>j (all others will not be computed) a solution is a varialbe x whose values ( for i>j ) are all integer a which verifies all capacity constraints and degree constraints a feasible solution is a solution that satisfies all constraints (cap and degree) but whose values are not all integer ''' ################ ### PATCHING ### ################ '''only needs to be done once (already done) from pyomo.environ import * import pyomo.version if pyomo.version.version_info >= (4, 2, 0, '', 0): # Pyomo 4.2 mistakenly discards the original expression or rule during # Expression.construct(). This makes it impossible to reconstruct expressions # (e.g., for iterated models). So we patch it. # Test whether patch is still needed: test_model = ConcreteModel() test_model.e = Expression(rule=lambda m: 0) if hasattr(test_model.e, "_init_rule") and test_model.e._init_rule is None: print ("Patching incompatible version of Pyomo." ) old_construct = pyomo.environ.Expression.construct def new_construct(self, *args, **kwargs): # save rule and expression, call the function, then restore them _init_rule = self._init_rule _init_expr = self._init_expr old_construct(self, *args, **kwargs) self._init_rule = _init_rule self._init_expr = _init_expr pyomo.environ.Expression.construct = new_construct else: print ( "NOTE: Pyomo no longer removes _init_rule during Expression.construct()." ) print (" The Pyomo patch for Expression.construct() is probably obsolete." ) del test_model ''' ###################### ### INITIALISATION ### ###################### log.title("initialising model") ''' initalise the solver and the abstract model ''' opt = SolverFactory('glpk') model = pyo.AbstractModel("CVRP") ''' define model parameters ''' model.number_of_vehicles = pyo.Param(within=pyo.PositiveIntegers) model.n = pyo.Param(within=pyo.PositiveIntegers) #pour l'instant = nombre de noeuds y compris le dépot model.capacity = pyo.Param(within=pyo.PositiveIntegers) model.nodes = pyo.RangeSet(0,model.n-1) #attention nodes[1] = 0 ....!!! model.locations = pyo.Param(model.nodes,pyo.RangeSet(0,1)) model.demands = pyo.Param(model.nodes) ''' instanciate model with inbound data ''' if len(sys.argv)!=2: file = "test3.dat" instance = model.create_instance(file) else: file = sys.argv[1] try: instance = model.create_instance(file) except: print("file not found, using test2.dat instead") print() file = "test2.dat" instance = model.create_instance(file) ''' contruct de distance parameter to save time ''' distances = {} #distance function (euclidian) dist = lambda x,y : sqrt( (x[0]-y[0])**2 + (x[1]-y[1])**2 ) for i in instance.nodes: for j in instance.nodes: if(i==j): distances[(i,j)] = 0 else: distances[(i,j)] = dist((instance.locations[i,0],instance.locations[i,1]),(instance.locations[j,0],instance.locations[j,1])) instance.costs = Param(instance.nodes,instance.nodes, initialize = distances) locations = support.to_list_locations(instance) del(instance.locations) # DOESNT WORK!! ''' define variable x ''' instance.x = pyo.Var(instance.nodes,instance.nodes, bounds = support.set_bounds) #deleting uneused variables (i<=j) for i in instance.nodes: for j in instance.nodes: if i<=j: del(instance.x[i,j]) ''' define the objective function ''' instance.objective = pyo.Objective( expr = sum( instance.costs[i,j]*instance.x[i,j] for i in instance.nodes for j in instance.nodes if i>j ) ) ''' define degree constraints ''' instance.c_deg = pyo.Constraint(instance.nodes, rule=support.rule_deg) ''' define capacity constraints as an empty list for now ''' instance.c_cap = pyo.ConstraintList() # on utilise cette structure pour pouvoir ajouter et supprimer des contraintes par la suite #liste vide pour commencer log.write_timed("finished constructing model") ###################### ### MAIN FUNCTIONS ### ###################### upper_bound = Infinity #initial best objective function value found feasible_solution_instances = [] #global list of feasible solutions found at time of cutting id = support.get_safe_counter() #global inrementing id to name the different instances class instance_manager(): #CAREFUL class is not thread safe!! def __init__(self): self.queue = [] self.upper_bound = google.upper_bound(instance,locations) self.length = 0 self.best_feasible_integer_solution = None self.branches_cut = 0 self.partial_solution_recorded = [] self.total_length = 0 def add(self,instance): if instance.lower_bound <= self.upper_bound: self.queue.append(instance) self.queue = sorted(self.queue,key = lambda x : x.lower_bound) self.length += 1 self.total_length += 1 else: self.branches_cut += 1 def pop(self): while self.length>0: instance = self.queue.pop(0) self.length -= 1 #we must verify that the condition still holds because the upper_bound may have changed since time of adding if instance.lower_bound < self.upper_bound : return instance return None def record_feasible_integer_solution(self,instance): if pyo.value(instance.objective) < self.upper_bound : self.upper_bound = pyo.value(instance.objective) support.integerize_solution(instance) self.best_feasible_integer_solution = instance def record_partial_solution(self,instance): index = 0 while index<self.length and self.queue[index].lower_bound<instance.lower_bound : index +=1 if index == self.length: self.partial_solution_recorded.append(instance) else : self.partial_solution_recorded.insert(index,instance) def branch(instance,instance_manager): #branches instance problem into two complementary sub problem instances over a specific index log.subtitle("entering branching",instance.id) # singular branching : can lead to unsolvable problems # we choose the index for branching whose corresponding value is closest to 0.5 index = -1,-1 dist = 1 # initialised at max value (actually max is 0.5 but oh well) available_bridges= verify_node_saturation(instance) #takes away bridges whose nodes are saturated in constraints for bridge in available_bridges: #do not consider bridge with depot for their bound is (0,2) and we would have to branch over 3 instances if abs(instance.x[bridge].value-0.5)<dist: index = bridge dist = abs(instance.x[bridge].value-0.5) if index==(-1,-1): #No branching index found log.write_timed("no branching found, branch must be cut",instance.id) #do nothing, branch will thus die out log.write_timed("branching found over index "+str(index)+" with value "+str(round(instance.x[index].value,4)),instance.id) #creating new instances ! recycling the old one into one of the new branches instance.x[index].fixed = True instance2 = instance.clone() instance.x[index].value = 0 instance2.x[index].value = 1 global id id0 = instance.id depth = instance.depth instance2.depth = depth+1 instance.depth = depth+1 instance.id = id0+[id.get_and_increment()] instance2.id = id0+[id.get_and_increment()] instance.lower_bound = max(cbc.lower_bound(instance),pyo.value(instance.objective)) instance2.lower_bound = max(cbc.lower_bound(instance2),pyo.value(instance2.objective)) log.write("value of objective function is " +str(round(pyo.value(instance.objective),2)) + " for new instance " +support.list_to_string(instance.id)+" which fixed variable at 0 is. Lower bound is "+str(instance.lower_bound),id0) log.write("value of objective function is " +str(round(pyo.value(instance2.objective),2)) + " for new instance " +support.list_to_string(instance2.id)+" which fixed variable at 0 is. Lower bound is "+str(instance2.lower_bound),id0) instance_manager.add(instance) instance_manager.add(instance2) def verify_node_saturation(instance): dic = { i : [0,0] for i in instance.nodes } for bridge in instance.x.keys(): if bridge[1]==0: continue if instance.x[bridge].fixed: dic[bridge[0]][instance.x[bridge].value] += 1 dic[bridge[1]][instance.x[bridge].value] += 1 continue # add_implicit_constraints(instance,dic) return [ b for b in instance.x.keys() if ( dic[b[0]] < [instance.n-1-2,2] and dic[b[1]] < [instance.n-1-2,2] ) ] def add_implicit_constraints(instance,dic): for i in dic.keys(): if dic[i][0] == instance.n-1-2: #remaining unfixed bridges must be fixed return def column_generation(instance,instance_manager): #iteratively adds constraints and solves the instance in order to strengthen the linear relaxation #STRUCTURE OF FUNCTION : #loop untill the solution is "good enough" OR too many iterations : #1) find violated constraints in specific order #2) if non found : exit ; we have found a solution that is feasible and necessarily optimal within the current branch (since it a solution found by the solver) #2b : if that solution is also integer, we need not continue this branch! #3) else : add found constraints to constraints list, re-solve linear problem and continue log.subtitle("entering column generation",instance.id) feasible_integer_found = False loop_count = 1 unmoving_count = 0 obj_val_old = pyo.value(instance.objective) while support.continue_column_generation(instance,loop_count): log.write("column generation loop "+str(loop_count),instance.id) #we first add capacity constraints success, count = constraint.add_c_cap(instance) log.write_timed("we found " +str(count) + " capacity cuts",instance.id) #if we have not found a single cutting plane (=violated constraint) --> feasible and optimal solution found if not(success) and support.solution_is_integer(instance): #the solution found is valid and integer --> optimal within the branch feasible_integer_found = True #code to formulate correct log log.write("!!!!! feasible integer solution found with objective value of "+str(round(pyo.value(instance.objective),2)),instance.id) old = instance_manager.upper_bound assertion = " " if old>pyo.value(instance.objective) else " not " log.write("new solution is"+assertion+"better than one previously found, this branch is dropped and its solution is"+assertion+"recorded") #actual conditional recording instance_manager.record_feasible_integer_solution(instance) #we add other constraints : multi_start,comb... success boolean is update at each new heuristic #remove_inactive_constraints(instance) obj_val = pyo.value(instance.objective) log.write( "objective function after loop "+str(loop_count)+": "+str(round(obj_val,4))+" ( "+str(support.integer_percent(instance))+"% integer )",instance.id) if not(success): instance_manager.record_partial_solution(instance) break #resolve instance before reiterating results = opt.solve(instance) #we verify that we are not stuck in an unmoving loop if abs(obj_val-obj_val_old)<0.000000001 : unmoving_count +=1 if unmoving_count >= max_unmoving_count : log.write("no evolution in column_generation, moving on to branching",instance.id) break else: unmoving_count = 0 obj_val_old = obj_val loop_count+=1 return feasible_integer_found def remove_inactive_constraints(instance): #must disable constraints that are inactive being careful of the fact that they may become active again later on... raise NameError("!!!!! remove_inactive_constraints must be implemented") def main_loop(instance_manager): instance = instance_manager.pop() while instance!=None: log.subtitle("starting processing of new instance with lower_bound of "+str(instance.lower_bound),instance.id) #adding constriants and resolving and verifying if we have, by chance, found an integer and feasible solution feasible_integer_found = column_generation(instance,instance_manager) #if we consider that we have done "enough", we also stop (typically : too many iterations) if instance.depth < max_depth and max_time_not_reached() and not(feasible_integer_found): #branch and apply main_loop to the two new instances branch(instance,instance_manager) else : log.write_timed("!!!!!! branch is cut because",instance.id) if instance.depth >= max_depth: log.write(">= max_depth",instance.id) if not(max_time_not_reached()) : log.write("max time reached",instance.id) if feasible_integer_found : log.write("feasible integer solution already found",instance.id) instance_manager.record_partial_solution(instance) instance = instance_manager.pop() #will return none if there are no instances left in queue ################ ### GRAPHING ### ################ def full_graph(instance,locations,status): log.write("saving "+status+" solution to "+log.name+"_"+status+"_solution_graph.png in current folder") g = graph.Graph(instance,locations) g.update_with_x(instance.x) fig = plt.figure(figsize=(15,15)) plt.axis('off') plt.title("graph of "+status+" solution found for CVRP solving with \n"+str(instance.n.value)+" nodes, "+str(instance.number_of_vehicles.value)+" vehicles with capacity of "+str(instance.capacity.value)) g.show() # fig.show() fig.savefig(log.name+"_"+status+"_solution_graph.png",bbox_inches='tight',dpi=fig.dpi*2) ############ ### MAIN ### ############ log.write("using input file "+file) instance.file = file log.title("starting CVRP solving for "+str(instance.n.value)+" nodes, "+str(instance.number_of_vehicles.value)+" vehicles with capacity of "+str(instance.capacity.value)) #computing lower_bound instance.lower_bound = cbc.lower_bound(instance) #initialising instance manager instance_manager = instance_manager() instance_manager.add(instance) log.write("initial upper bound of cvrp problem is "+str(instance_manager.upper_bound)) #solving the initial instance in order to initialize instance.x values results = opt.solve(instance) #printing initial value of objective function log.write("initial value of objective function "+str(round(pyo.value(instance.objective),2))+" and is "+str(support.integer_percent(instance))+"% integer") #saving initial graph full_graph(instance,locations,"initial") log.write_timed("finished saving graph") #printing initial value of objective function log.write("initial value of objective function "+str(round(pyo.value(instance.objective),2))+" and is "+str(support.integer_percent(instance))+"% integer") instance.id = [id.get_and_increment()] instance.depth = 0 main_loop(instance_manager) log.title("finished solving") log.write_timed("") if instance_manager.best_feasible_integer_solution==None: log.write("no optimal integer solution found") if len(instance_manager.partial_solution_recorded)>0: log.write("best lower bound found :" +str(pyo.value(instance_manager.partial_solution_recorded[0].objective))+" and is "+str(support.integer_percent(instance_manager.partial_solution_recorded[0]))+"% integer") log.write(support.print_solution_routes(instance_manager.partial_solution_recorded[0])) full_graph(instance_manager.partial_solution_recorded[0],locations,"partial") log.write_timed("finished saving graph") else: log.write("not a single partial solution was recorded...") else: # if input("show instance ? (y/n) (yes/no) \n") in ["y","yes","oui","hell","yeah"]: # instance_manager.best_feasible_integer_solution.display() log.write("best feaible integer solution found has objective value of "+str(pyo.value(instance_manager.best_feasible_integer_solution.objective))) log.write(support.print_solution_routes(instance_manager.best_feasible_integer_solution)) full_graph(instance_manager.best_feasible_integer_solution,locations,"final") log.write_timed("finished saving graph")